miércoles, 2 de septiembre de 2009

Inicio
Demostracion de Pappus
Demostracion de Platon
Demostracion de Euclides

Supuesta Demostracion de Pitagoras



Se estima que se demostró el teorema mediante semejanza de triángulos: sus lados homólogos son proporcionales.1

Sea el triángulo ABC, rectángulo en C. El segmento CH es la altura relativa a la hipotenusa, en la que determina los segmentos a’ y b’, proyecciones en ella de los catetos a y b, respectivamente.

Los triángulos rectángulos ABC, AHC y BHC tienen sus tres bases iguales: todos tienen dos bases en común, y los ángulos agudos son iguales bien por ser comunes, bien por tener sus lados perpendiculares. En consecuencia dichos triángulos son semejantes.

  • De la semejanza entre ABC y AHC:


\frac {b}{b'}=\frac {c}{b}


b^2\ =\ b'c


  • De la semejanza entre ABC y BHC:


\frac {a}{a'}=\frac {c}{a}


a^2\ =\ a'c


Los resultados obtenidos son el teorema del cateto. Sumando:

a^2\ +\ b^2 =a'c\ +\ b'c\ =\ c\left (a'+b'\right )

Pero \left (a'+b'\right )=\ c, por lo que finalmente resulta:

a^2\ +\ b^2 =c^2

Pitágoras también pudo haber demostrado el teorema basándose en la relación entre las superficies de figuras semejantes.

Los triángulos PQR y PST son semejantes, de manera que:

\frac {r}{u}=\frac {s}{v} = r

siendo r la razón de semejanza entre dichos triángulos. Si ahora buscamos la relación entre sus superficies:

S_{PQR}\ =\ \frac {1}{2} \left ( rs \right )
S_{PST}\ =\ \frac {1}{2} \left ( uv \right )

obtenemos después de simplificar que:

\frac {S_{PQR}}{S_{PST}}=\frac {rs}{uv} = \frac {r}{u} \cdot \frac {s}{v}

pero siendo \frac {r}{u}=\frac {s}{v} = r la razón de semejanza, está claro que:

\frac {S_{PQR}}{S_{PST}}= \left (\frac {r}{u} \right )^2 = \left ( \frac {s}{v} \right ) ^2

Es decir, "la relación entre las superficies de dos figuras semejantes es igual al cuadrado de la razón de semejanza".

Aplicando ese principio a los triángulos rectángulos semejantes ACH y BCH tenemos que:

\frac {S_{ACH}}{S_{BCH}}= \left (\frac {b}{a} \right )^2

que de acuerdo con las propiedades de las proporciones nos da:

\frac {S_{ACH}} {b^2} = \frac {S_{BCH}} {a^2} = \frac {S_{ACH} + S_{BCH}}{b^2+a^2 } (I)

y por la semejanza entre los triángulos ACH y ABC resulta que:

\frac {S_{ACH}}{S_{ABC}}= \left (\frac {b}{c} \right )^2
\frac {S_{ACH}}{b^2} = \frac {S_{ABC}} {c^2}

pero según (I) \frac {S_{ACH}} {b^2} = \frac {S_{ACH} + S_{BCH}}{b^2+a^2 }, así que:

 \frac {S_{ACH} + S_{BCH}}{b^2+a^2 } = \frac {S_{ABC}} {c^2}

y por lo tanto:

 b^2 \ +\ a^2 \ = \ c^2

quedando demostrado el teorema de Pitágoras.

Es asimismo posible que Pitágoras hubiera obtenido una demostración gráfica del teorema.

Partiendo de la configuración inicial, con el triángulo rectángulo de lados a, b, c, y los cuadrados correspondientes a catetos e hipotenusa –izquierda-, se construyen dos cuadrados iguales:

  • Uno de ellos –centro- está formado por los cuadrados de los catetos, más cuatro triángulos rectángulos iguales al triángulo inicial.
  • El otro cuadrado –derecha- lo conforman los mismos cuatro triángulos, y el cuadrado de la hipotenusa.

Si a cada uno de estos cuadrados les quitamos los triángulos, evidentemente el área del cuadrado gris (c2) equivale a la de los cuadrados amarillo y azul (b2 + a2), habiéndose demostrado el teorema de Pitágoras.